
Digital electronics
Digital electronics, digital technology or digital (electronic) circuits are electronics that
operate on digital signals. In contrast, analog circuits manipulate analog signals whose
performance is more subject to manufacturing tolerance, signal attenuation and noise.
Digital techniques are helpful because it is much easier to get an electronic device to switch
into one of a number of known states than to accurately reproduce a continuous range of
values.

Digital electronic circuits are usually made from large assemblies of logic gates (often
printed on integrated circuits), simple electronic representations of Boolean logic functions

Binary number
In mathematics and digital electronics, a binary number is a number expressed in
the base-2 numeral system or binary numeral system, which uses only two symbols:
typically "0" (zero) and "1" (one).

The base-2 numeral system is a positional notation with a radix of 2. Each digit is referred to
as a bit. Because of its straightforward implementation in digital electronic
circuitry using logic gates, the binary system is used by almost all modern computers and
computer-based devices.

Decimal counting

Decimal counting uses the ten symbols 0 through 9. Counting begins with the incremental
substitution of the least significant digit (rightmost digit) which is often called the first digit.
When the available symbols for this position are exhausted, the least significant digit is
reset to 0, and the next digit of higher significance (one position to the left) is incremented
(overflow), and incremental substitution of the low-order digit resumes. This method of reset
and overflow is repeated for each digit of significance. Counting progresses as follows:

000, 001, 002, ... 007, 008, 009, (rightmost digit is reset to zero, and the digit to its

left is incremented)

010, 011, 012, ...

 ...

090, 091, 092, ... 097, 098, 099, (rightmost two digits are reset to zeroes, and next

digit is incremented)

100, 101, 102, ...

Binary counting

Binary counting follows the same procedure, except that only the two symbols 0 and 1 are
available. Thus, after a digit reaches 1 in binary, an increment resets it to 0 but also causes
an increment of the next digit to the left:

0000,

0001, (rightmost digit starts over, and next digit is incremented)

0010, 0011, (rightmost two digits start over, and next digit is incremented)

https://en.wikipedia.org/wiki/Electronics
https://en.wikipedia.org/wiki/Digital_signal
https://en.wikipedia.org/wiki/Analog_circuits
https://en.wikipedia.org/wiki/Analog_signal
https://en.wikipedia.org/wiki/Engineering_tolerance
https://en.wikipedia.org/wiki/Path_loss
https://en.wikipedia.org/wiki/Noise_(electronics)
https://en.wikipedia.org/wiki/Electronic_circuit
https://en.wikipedia.org/wiki/Logic_gate
https://en.wikipedia.org/wiki/Integrated_circuit
https://en.wikipedia.org/wiki/Boolean_logic#Digital_electronic_circuit_design
https://en.wikipedia.org/wiki/Digital_electronics
https://en.wikipedia.org/wiki/Number
https://en.wikipedia.org/wiki/Zero
https://en.wikipedia.org/wiki/One
https://en.wikipedia.org/wiki/Positional_notation
https://en.wikipedia.org/wiki/Radix
https://en.wikipedia.org/wiki/Bit
https://en.wikipedia.org/wiki/Digital_electronics
https://en.wikipedia.org/wiki/Digital_electronics
https://en.wikipedia.org/wiki/Logic_gate
https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Decimal

Addition
 Adder

The simplest arithmetic operation in binary is addition. Adding two single-digit binary
numbers is relatively simple, using a form of carrying:

0 + 0 → 0

0 + 1 → 1

1 + 0 → 1

1 + 1 → 0, carry 1 (since 1 + 1 = 2 = 0 + (1 × 21))

Adding two "1" digits produces a digit "0", while 1 will have to be added to
the next column. This is similar to what happens in decimal when certain
single-digit numbers are added together; if the result equals or exceeds the
value of the radix (10), the digit to the left is incremented:

5 + 5 → 0, carry 1 (since 5 + 5 = 10 = 0 + (1 × 101))

7 + 9 → 6, carry 1 (since 7 + 9 = 16 = 6 + (1 × 101))

This is known as carrying. When the result of an addition exceeds
the value of a digit, the procedure is to "carry" the excess amount
divided by the radix (that is, 10/10) to the left, adding it to the next
positional value. This is correct since the next position has a weight
that is higher by a factor equal to the radix. Carrying works the same
way in binary:

0100, 0101, 0110, 0111, (rightmost three digits start over, and the next digit is

incremented)

1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111 ...

In the binary system, each digit represents an increasing power of 2, with
the rightmost digit representing 20, the next representing 21, then 22, and
so on. The value of a binary number is the sum of the powers of 2
represented by each "1" digit. For example, the binary number 100101 is
converted to decimal form as follows:

1001012 = [(1) × 25] + [(0) × 24] + [(0) × 23] + [(1) × 22] + [(0) × 21] + [(1)

× 20]

1001012 = [1 × 32] + [0 × 16] + [0 × 8] + [1 × 4] + [0 × 2] + [1 × 1]

1001012 = 3710

Subtraction
Further information: signed number representations and two's complement

Subtraction works in much the same way:

0 − 0 → 0

0 − 1 → 1, borrow 1

1 − 0 → 1

https://en.wikipedia.org/wiki/Signed_number_representations
https://en.wikipedia.org/wiki/Two%27s_complement
https://en.wikipedia.org/wiki/Subtraction

1 − 1 → 0

Subtracting a "1" digit from a "0" digit produces the digit "1", while 1 will have
to be subtracted from the next column. This is known as borrowing. The
principle is the same as for carrying. When the result of a subtraction is less
than 0, the least possible value of a digit, the procedure is to "borrow" the
deficit divided by the radix (that is, 10/10) from the left, subtracting it from the
next positional value.

Multiplication

Multiplication in binary is similar to its decimal counterpart. Two numbers A and B can be

multiplied by partial products: for each digit in B, the product of that digit in A is calculated

and written on a new line, shifted leftward so that its rightmost digit lines up with the digit

in B that was used. The sum of all these partial products gives the final result.

Since there are only two digits in binary, there are only two possible outcomes of each
partial multiplication:

• If the digit in B is 0, the partial product is also 0

• If the digit in B is 1, the partial product is equal to A

Division

Long division in binary is again similar to its decimal counterpart.

In the example below, the divisor is 1012, or 5 in decimal, while the dividend is 110112, or 27
in decimal. The procedure is the same as that of decimal long division; here, the divisor
1012 goes into the first three digits 1102 of the dividend one time, so a "1" is written on the
top line. This result is multiplied by the divisor, and subtracted from the first three digits of
the dividend; the next digit (a "1") is included to obtain a new three-digit sequence:

Conversion to and from other numeral systems

Decimal

To convert from a base-10 integer to its base-2 (binary) equivalent, the number is divided by
two. The remainder is the least-significant bit. The quotient is again divided by two; its
remainder becomes the next least significant bit. This process repeats until a quotient of
one is reached. The sequence of remainders (including the final quotient of one) forms the
binary value, as each remainder must be either zero or one when dividing by two. For
example, (357)10 is expressed as (101100101)2.

Conversion from base-2 to base-10 simply inverts the preceding algorithm. The bits of the
binary number are used one by one, starting with the most significant (leftmost) bit.
Beginning with the value 0, the prior value is doubled, and the next bit is then added to
produce the next value. This can be organized in a multi-column table. For example, to
convert 100101011012 to decimal:

Binary 1 0 0 1 0 1 0 1 1 0 1

https://en.wikipedia.org/wiki/Multiplication
https://en.wikipedia.org/wiki/Long_division
https://en.wikipedia.org/wiki/Divisor
https://en.wikipedia.org/wiki/Division_(mathematics)
https://en.wikipedia.org/wiki/Long_division
https://en.wikipedia.org/wiki/Integer_(computer_science)
https://en.wikipedia.org/wiki/Division_by_two
https://en.wikipedia.org/wiki/Division_by_two
https://en.wikipedia.org/wiki/Least-significant_bit

Decimal

1×210
+

0×29
+

0×28
+

1×27
+

0×26
+

1×25
+

0×24
+

1×23
+

1×22
+

0×21
+

1×20
=

119
7

The fractional parts of a number are converted with similar methods. They are again based
on the equivalence of shifting with doubling or halving.

In a fractional binary number such as 0.110101101012, the first digit is 1/2, the
second (1/2)^2, etc. So if there is a 1 in the first place after the decimal, then the number is
at least (1/2), and vice versa. Double that number is at least 1. This suggests the algorithm:
Repeatedly double the number to be converted, record if the result is at least 1, and then
throw away the integer part.

Digital signal
A digital signal is a signal that is being used to represent data as a sequence

of discrete values; at any given time it can only take on one of a finite number of values.This

contrasts with an analog signal, which represents continuous values; at any given time it

represents a real number within a continuous range of values.

https://en.wikipedia.org/wiki/Signal_(electrical_engineering)
https://en.wikipedia.org/wiki/Discrete_space
https://en.wikipedia.org/wiki/Analog_signal
https://en.wikipedia.org/wiki/Continuity_(mathematics)
https://en.wikipedia.org/wiki/Real_number

Logic gate
A logic gate is an idealized or physical electronic device implementing a Boolean function,

a logical operation performed on one or more binary inputs that produces a single binary

output. Depending on the context, the term may refer to an ideal logic gate, one that has

for instance zero rise time and unlimited fan-out, or it may refer to a non-ideal physical

device

Logic gates are primarily implemented using diodes or transistors acting as electronic
switches, but can also be constructed using vacuum tubes, electromagnetic relays (relay
logic), fluidic logic, pneumatic logic, optics, molecules, or even mechanical elements. With
amplification, logic gates can be cascaded in the same way that Boolean functions can be
composed, allowing the construction of a physical model of all of Boolean logic, and
therefore, all of the algorithms and mathematics that can be described with Boolean logic.

Logic circuits include such devices as multiplexers, registers, arithmetic logic units (ALUs),
and computer memory, all the way up through complete microprocessors, which may
contain more than 100 million gates. In modern practice, most gates are made
from MOSFETs (metal–oxide–semiconductor field-effect transistors).

Compound logic gates AND-OR-Invert (AOI) and OR-AND-Invert (OAI) are often employed
in circuit design because their construction using MOSFETs is simpler and more efficient
than the sum of the individual gates

https://en.wikipedia.org/wiki/Electronics
https://en.wikipedia.org/wiki/Boolean_function
https://en.wikipedia.org/wiki/Logical_operation
https://en.wikipedia.org/wiki/Binary_number
https://en.wikipedia.org/wiki/Rise_time
https://en.wikipedia.org/wiki/Fan-out
https://en.wikipedia.org/wiki/Diode
https://en.wikipedia.org/wiki/Transistor
https://en.wikipedia.org/wiki/Switch#Electronic_switches
https://en.wikipedia.org/wiki/Switch#Electronic_switches
https://en.wikipedia.org/wiki/Vacuum_tube
https://en.wikipedia.org/wiki/Relay
https://en.wikipedia.org/wiki/Relay_logic
https://en.wikipedia.org/wiki/Relay_logic
https://en.wikipedia.org/wiki/Fluidic_logic
https://en.wikipedia.org/wiki/Pneumatics#Pneumatic_logic
https://en.wikipedia.org/wiki/Optics
https://en.wikipedia.org/wiki/Molecular_logic_gate
https://en.wikipedia.org/wiki/Analytical_engine
https://en.wikipedia.org/wiki/Boolean_logic
https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Multiplexer
https://en.wikipedia.org/wiki/Processor_register
https://en.wikipedia.org/wiki/Arithmetic_logic_unit
https://en.wikipedia.org/wiki/Computer_memory
https://en.wikipedia.org/wiki/Microprocessor
https://en.wikipedia.org/wiki/MOSFET
https://en.wikipedia.org/wiki/Field-effect_transistor
https://en.wikipedia.org/wiki/AND-OR-Invert

De Morgan equivalent symbols

By use of De Morgan's laws, an AND function is identical to an OR function with negated
inputs and outputs. Likewise, an OR function is identical to an AND function with negated

https://en.wikipedia.org/wiki/De_Morgan%27s_laws

inputs and outputs. A NAND gate is equivalent to an OR gate with negated inputs, and a
NOR gate is equivalent to an AND gate with negated inputs.

This leads to an alternative set of symbols for basic gates that use the opposite core symbol
(AND or OR) but with the inputs and outputs negated. Use of these alternative symbols can
make logic circuit diagrams much clearer and help to show accidental connection of an
active high output to an active low input or vice versa. Any connection that has logic
negations at both ends can be replaced by a negationless connection and a suitable
change of gate or vice versa. Any connection that has a negation at one end and no
negation at the other can be made easier to interpret by instead using the De Morgan
equivalent symbol at either of the two ends. When negation or polarity indicators on both
ends of a connection match, there is no logic negation in that path (effectively, bubbles
"cancel"), making it easier to follow logic states from one symbol to the next. This is
commonly seen in real logic diagrams – thus the reader must not get into the habit of
associating the shapes exclusively as OR or AND shapes, but also take into account the
bubbles at both inputs and outputs in order to determine the "true" logic function indicated.

A De Morgan symbol can show more clearly a gate's primary logical purpose and the
polarity of its nodes that are considered in the "signaled" (active, on) state. Consider the
simplified case where a two-input NAND gate is used to drive a motor when either of its
inputs are brought low by a switch. The "signaled" state (motor on) occurs when either one
OR the other switch is on. Unlike a regular NAND symbol, which suggests AND logic, the
De Morgan version, a two negative-input OR gate, correctly shows that OR is of interest.
The regular NAND symbol has a bubble at the output and none at the inputs (the opposite
of the states that will turn the motor on), but the De Morgan symbol shows both inputs and
output in the polarity that will drive the motor.

Boolean algebra
In mathematics and mathematical logic, Boolean algebra is the branch of algebra in which

the values of the variables are the truth values true and false, usually denoted 1 and 0

respectively. Instead of elementary algebra where the values of the variables are numbers,

and the prime operations are addition and multiplication, the main operations of Boolean

algebra are the conjunction (and) denoted as ∧, the disjunction (or) denoted as ∨, and

the negation (not) denoted as ¬. It is thus a formalism for describing logical operations in

the same way that elementary algebra describes numerical operations.

Basic operations

The basic operations of Boolean algebra are as follows:

• AND (conjunction), denoted x∧y (sometimes x AND y or Kxy), satisfies x∧y = 1 if x = y =

1, and x∧y = 0 otherwise.

• OR (disjunction), denoted x∨y (sometimes x OR y or Axy), satisfies x∨y = 0 if x = y = 0,
and x∨y = 1 otherwise.

• NOT (negation), denoted ¬x (sometimes NOT x, Nx or !x), satisfies ¬x = 0 if x = 1 and
¬x = 1 if x = 0.

https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Mathematical_logic
https://en.wikipedia.org/wiki/Algebra
https://en.wikipedia.org/wiki/Variable_(mathematics)
https://en.wikipedia.org/wiki/Truth_value
https://en.wikipedia.org/wiki/Elementary_algebra
https://en.wikipedia.org/wiki/Logical_conjunction
https://en.wikipedia.org/wiki/Logical_disjunction
https://en.wikipedia.org/wiki/Negation
https://en.wikipedia.org/wiki/Logical_operation
https://en.wikipedia.org/wiki/Logical_conjunction
https://en.wikipedia.org/wiki/Logical_disjunction
https://en.wikipedia.org/wiki/Negation

Alternatively the values of x∧y, x∨y, and ¬x can be expressed by tabulating their values
with truth tables as follows:

0 0 0 0

1 0 0 1

0 1 0 1

1 1 1 1

0 1

1 0

If the truth values 0 and 1 are interpreted as integers, these operations may be expressed
with the ordinary operations of arithmetic (where x + y uses addition and xy uses
multiplication), or by the minimum/maximum functions:

One might consider that only negation and one of the two other operations are basic,
because of the following identities that allow one to define conjunction in terms of
negation and the disjunction, and vice versa (De Morgan's laws):

Secondary operations

The three Boolean operations described above are referred to as basic, meaning
that they can be taken as a basis for other Boolean operations that can be built up
from them by composition, the manner in which operations are combined or
compounded.

These definitions give rise to the following truth tables giving the values of these

operations for all four possible inputs.

Secondary operations. Table 1

https://en.wikipedia.org/wiki/Truth_tables
https://en.wikipedia.org/wiki/De_Morgan%27s_laws

0 0 1 0 1

1 0 0 1 0

0 1 1 1 0

1 1 1 0 1

The first operation, x → y, or Cxy, is called material implication. If x is true then the value
of x → y is taken to be that of y (e.g. if x is true and y is false, then x → y is also false). But
if x is false then the value of y can be ignored; however the operation must
return some boolean value and there are only two choices. So by
definition, x → y is true when x is false. (Relevance logic suggests this definition by viewing
an implication with a false premise as something other than either true or false.)

The second operation, x ⊕ y, or Jxy, is called exclusive or (often abbreviated as XOR) to
distinguish it from disjunction as the inclusive kind. It excludes the possibility of both x and y
being true (e.g. see table): if both are true then result is false. Defined in terms of arithmetic
it is addition mod 2 where 1 + 1 = 0.

The third operation, the complement of exclusive or, is equivalence or Boolean
equality: x ≡ y, or Exy, is true just when x and y have the same value. Hence x ⊕ y as its
complement can be understood as x ≠ y, being true just when x and y are different. Thus, its
counterpart in arithmetic mod 2 is x + y. Equivalence's counterpart in arithmetic mod 2
is x + y + 1.

Given two operands, each with two possible values, there are 22 = 4 possible combinations
of inputs. Because each output can have two possible values, there are a total of 24 = 16
possible binary Boolean operations. Any such operation or function (as well as any Boolean
function with more inputs) can be expressed with the basic operations from above. Hence
the basic operations are functionally complete.

https://en.wikipedia.org/wiki/Relevance_logic
https://en.wikipedia.org/wiki/False_premise
https://en.wikipedia.org/wiki/Exclusive_or
https://en.wikipedia.org/wiki/Boolean_algebras_canonically_defined#Truth_tables
https://en.wikipedia.org/wiki/Boolean_algebras_canonically_defined#Truth_tables
https://en.wikipedia.org/wiki/Functional_completeness

Boolean algebra satisfies many of the same laws as ordinary algebra when one matches up
∨ with addition and ∧ with multiplication. In particular the following laws are common to both
kinds of algebra

Combinational Logic Circuits

Combinational Logic Circuits are memoryless digital logic circuits whose

output at any instant in time depends only on the combination of its inputs

Combinational Logic Circuits are made up from basic logic NAND,
NOR or NOT gates that are “combined” or connected together to
produce more complicated switching circuits. These logic gates are

the building blocks of combinational logic circuits. An example of a
combinational circuit is a decoder, which converts the binary code
data present at its input into a number of different output lines, one at
a time producing an equivalent decimal code at its output.

Combinational logic circuits can be very simple or very complicated
and any combinational circuit can be implemented with
only NAND and NOR gates as these are classed as “universal” gates.

The three main ways of specifying the function of a combinational
logic circuit are:

• 1. Boolean Algebra – This forms the algebraic expression

showing the operation of the logic circuit for each input variable
either True or False that results in a logic “1” output.

• 2. Truth Table – A truth table defines the function of a logic gate

by providing a concise list that shows all the output states in
tabular form for each possible combination of input variable that
the gate could encounter.

• 3. Logic Diagram – This is a graphical representation of a logic

circuit that shows the wiring and connections of each individual
logic gate, represented by a specific graphical symbol, that
implements the logic circuit.

Half Adder Truth Table

Now it has been cleared that 1-bit adder can be easily implemented

with the help of the XOR Gate for the output ‘SUM’ and an AND Gate

for the ‘Carry’. When we need to add, two 8-bit bytes together, we can

be done with the help of a full-adder logic. The half-adder is useful

when you want to add one binary digit quantities. A way to develop a

two-binary digit adders would be to make a truth table and reduce it.

When you want to make a three binary digit adder, do it again. When

you decide to make a four digit adder, do it again. The circuits would

be fast, but development time is slow.

VHDL Code For half Adder

entity ha is

Port (a: in STD_LOGIC;

b : in STD_LOGIC;

sha : out STD_LOGIC;

cha : out STD_LOGIC);

end ha;

architecture Behavioral of ha is

begin

sha <= a xor b ;

cha <= a and b ;

end Behavioral

Full Adder

This adder is difficult to implement than a half-adder. The difference

between a half-adder and a full-adder is that the full-adder has three

inputs and two outputs, whereas half adder has only two inputs and

two outputs. The first two inputs are A and B and the third input is an

input carry as C-IN. When a full-adder logic is designed, you string

eight of them together to create a byte-wide adder and cascade the

carry bit from one adder to the next.

